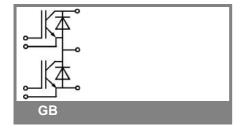
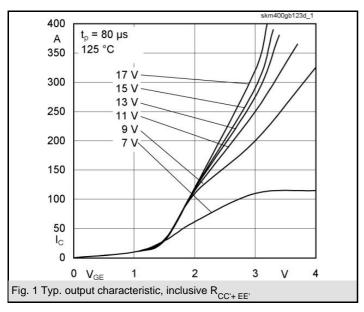


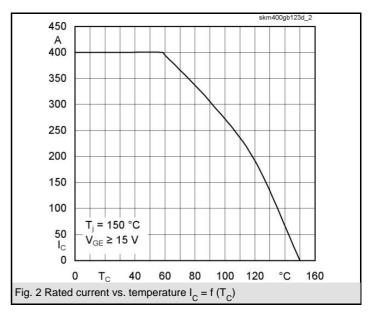
IGBT Modules

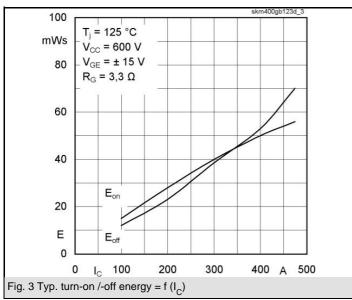
SKM 400GB123D

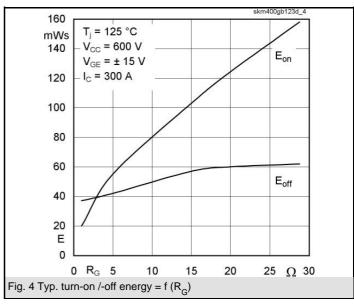
Features

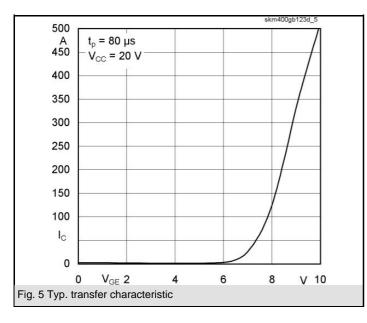

- MOS input (voltage controlled)
- N channel, homgeneous Si
- Low inductance case
- Very low tail current with low temperature dependence
- High short circuit capability, self limiting to 6 x I_{cnom}
- Latch-up free
- . Fast & soft CAL diodes
- Isolated copper baseplate using DBC Direct Copper Bonding Technology
- Large clearance (12 mm) and creepage distances (20 mm)

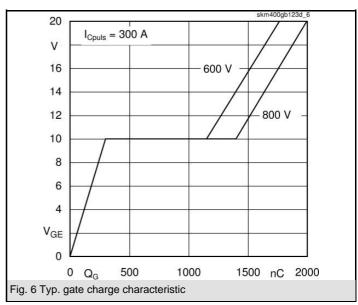

Typical Applications

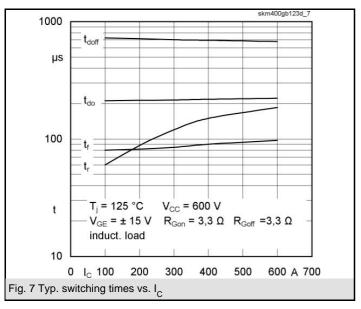

• Switching (not for linear use)

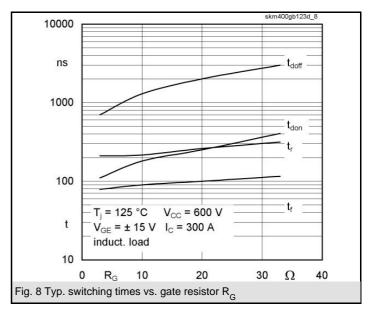

Absolute	Maximum Ratings	T_c = 25 °C, unless otherwise specified						
Symbol	Conditions	Values	Units					
IGBT		·						
V_{CES}		1200	V					
V _{CES}	T _c = 25 (80) °C	400 (330)	Α					
I _{CRM}	$T_c = 25 (80) ^{\circ}C, t_p = 1 \text{ms}$	800 (660)	Α					
V_{GES}		± 20	V					
T_{vj} , (T_{stg})	$T_{OPERATION} \leq T_{stg}$	- 40+ 150 (125)	°C					
V _{isol}	AC, 1 min.	2500	V					
Inverse diode								
I _F	T _c = 25 (80) °C	390 (260)	Α					
I _{FRM}	$T_c = 25 (125) ^{\circ}\text{C}, t_p = 1 \text{ms}$	800 (660)	Α					
I _{FSM}	$t_p = 10 \text{ ms; sin.; } T_j = 150 \text{ °C}$	2900	Α					

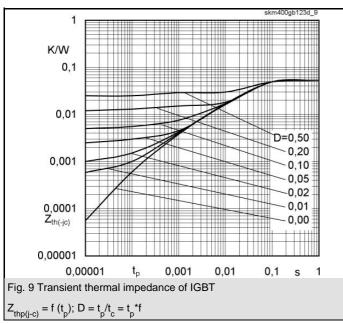

Character	iotico	T = 25 °C	= 25 °C, unless otherwise specified				
		Ŭ					
Symbol	Conditions	min.	typ.	max.	Units		
IGBT							
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 12 \text{ mA}$	4,5	5,5	6,5	V		
I _{CES}	$V_{GE} = 0, V_{CE} = V_{CES}, T_j = 25 (125) °C$		0,1	0,3	mA		
V _{CE(TO)}	T _j = 25 (125) °C		1,4 (1,6)	,	V		
r_{CE}	V _{GE} = 15 V, T _j = 25 (125) °C		3,66 (5)	4,66 (6,33)	mΩ		
V _{CE(sat)}	I_C = 300 A, V_{GE} = 15 V, chip level		2,5 (3,1)	3 (3,7)	V		
C _{ies}	under following conditions		22	30	nF		
C _{oes}	$V_{GE} = 0, V_{CE} = 25 \text{ V}, f = 1 \text{ MHz}$		3,3	4	nF		
C _{res}			1,2	1,6	nF		
L _{CE}				20	nH		
R _{CC'+EE'}	res., terminal-chip T _c = 25 (125) °C		0,35 (0,5)		mΩ		
t _{d(on)}	$V_{CC} = 600 \text{ V}, I_{C} = 300 \text{ A}$		200	400	ns		
t _r	$R_{Gon} = R_{Goff} = 3.3 \Omega$, $T_j = 125 °C$		115	220	ns		
t _{d(off)}	V _{GE} = ± 15 V		720	900	ns		
t _f			80	100	ns		
E _{on} (E _{off})			38 (40)		mJ		
Inverse diode							
$V_F = V_{EC}$	$I_F = 300 \text{ A}; V_{GE} = 0 \text{ V}; T_j = 25 (125) ^{\circ}\text{C}$		2 (1,8)	2,5	V		
V _(TO)	T _j = 125 () °C			1,2	V		
r _T	$T_{j} = 125 () ^{\circ}C$		2,5	3,5	mΩ		
I _{RRM}	I _F = 300 A; T _j = 25 (125) °C		85 (140)		Α		
Q _{rr}	di/dt = 2000 A/µs		13 (40)		μC		
E _{rr}	V _{GE} = V				mJ		
Thermal characteristics							
R _{th(j-c)}	per IGBT			0,05	K/W		
R _{th(j-c)D}	per Inverse Diode			0,125	K/W		
R _{th(c-s)}	per module			0,038	K/W		
Mechanical data							
M_s	to heatsink M6	3		5	Nm		
M _t	to terminals M6				Nm		
w				325	g		

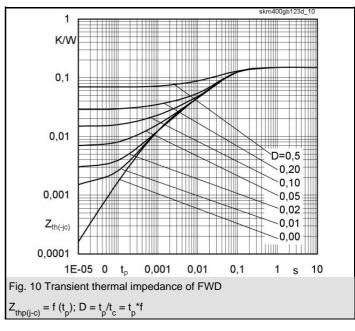


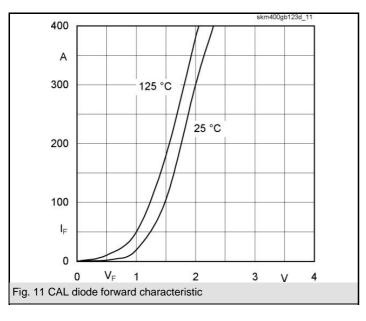


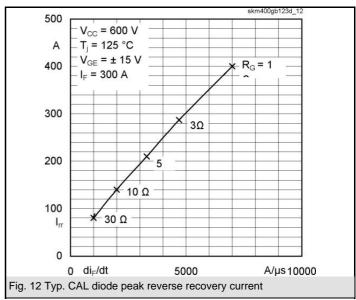


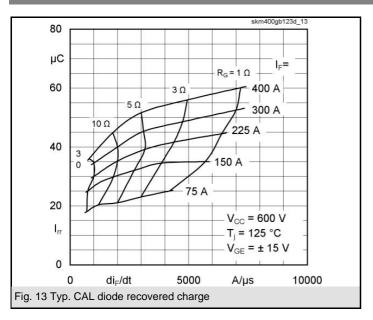


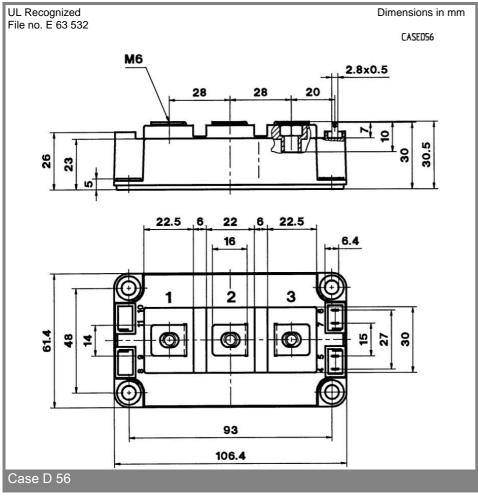


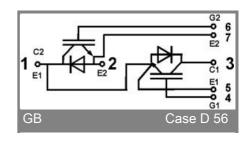












This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.